
CS166 Handout 03

Spring 2016 March 31, 2016

Problem Set Policies

The problem sets in CS166 will consist of a combination of design questions (where you'll devise
your own data structures), theory questions (where you'll prove results related to various data struc-
tures), and implementation questions (where you'll implement data structures or run performance
trials). This handout is designed to give you a sense of what we're looking for in your solution sets.

Submission Instructions
All written problems should be submitted online through GradeScope. You can sign up for Grade-
Scope using this code:

93DENM

No hardcopy submissions for written problems will be accepted without the prior approval of the
course staff; it's logistically quite difficult to handle both hardcopies and electronic copies.

Please do not submit handwritten solution sets. They're hard to read on GradeScope and it makes
grading a lot more difficult. We recommend typesetting your answers with LaTeX; there are a num-
ber of online tools you can use to collaboratively edit LaTeX documents.

We ask that you submit your answers to programming questions separately from your written an-
swers. You can submit your code electronically by sshing into one of the Stanford computer clusters
(for example, corn), cd-ing into the directory containing your solution files, then running

/usr/class/cs166/bin/submit

in the directory that you want to submit. You'll be prompted for your name, whether you worked
with a partner, and the problem set number. We'll test your code on the corn machines, so please
make sure that your code works correctly there before submitting.

2 / 5

Answering Design Questions
Many questions on the problem set will ask you to design a data structure or algorithm that solves a
problem within a particular time bound. When writing up answers to these questions, we recom-
mend that you structure your solution as follows:

• Begin with a short, high-level description of the idea behind the data structure. This
should be a two or three sentence paragraph describing the intuition behind the data struc-
ture. This will help the TAs get a better sense for how the data structure works.

• Describe the representation of the data structure. Give some details about how the data
structure is actually put together. You can do this with details such as “store two max heaps
called a and b,” or by describing a modification of an existing data structure, such as “store a
Fibonacci heap, but where each node stores a pointer into a balanced binary search tree.”

• Describe any invariants or accounting schemes for the data structure. Some data struc-
tures maintain strict invariants on their internal representation. For example, a binary min-
heap data structure ensures that each node always stores a value no larger than its children
and that the tree is a complete binary tree. If your data structure doesn't have any invariants,
you don't need to list anything. When we begin discussing amortized analysis, you can also
list any charging schemes or potential functions here.

• Describe each of the operations and give their runtimes. For each operation, describe
how that operation is performed. We'd prefer explanations in plain English, but if you think
that pseudocode would be better, you can use that if you'd like. Just make sure that your de-
scription is complete – there shouldn't be any ambiguities in how to perform each operation.
Then, explain why these operations are correct and justify why the data structure meets
specified time bounds. You don't need to write a formal proof of correctness unless asked.

For example, consider the following problem:

Design a data structure that supports the following operations: insert(x), which in-
serts real number x into the data structure and runs in time O(log n), where n is the
number of elements in the data structure, and find-median(), which returns the me-
dian of the data set if it is nonempty and runs in time O(1).

This is great problem to work through if you haven't seen it before. We have a sample solution on
the next page, so try this problem out before moving on. As a hint, try using heaps.

3 / 5

Here is a possible answer to this problem and a sample writeup. Note that you don't need to include
section headers like these; we're just doing this because in this case we think it's easier to read.

Overview:

This data structure works by storing the data in a min-heap and a max-heap such that the two mid-
dle values are at the top of each heap. Since only O(1) enqueues and dequeues are required per in-
sert and only O(1) find-mins are required per find-median, the data structure fits within the time
bounds.

Representation:

A max-heap left and a min-heap right.

Invariants:

There are two invariants: the ordering invariant, which says that all elements in left are less than or
equal to all elements in right, and the size invariant, which says that size(left) = size(right) if there
are an even number of elements, and otherwise the sizes of left and right differ by only one. These
guarantees mean that if there are an even number of elements in the data structure, the median is
the average of max(left) and min(right), and otherwise the median is the max or min value of
whichever heap is larger.

Operations:

insert(x): First, determine which heap should contain x to maintain the ordering invariant. If
x < max(left), then add x to left; otherwise add it to right. This may break the size invariant. The
size invariant can only be violated if before adding the value, there were an odd number of entries
in the data structure (since if previously there were an even number of values, the heaps would have
to have the same size). Therefore, if after inserting the value there are an even number of elements,
and if additionally and one heap has exactly two more elements than the other, dequeue from that
heap and enqueue the appropriate value into the other heap. This operation preserves the ordering
invariant, since the value removed is either the biggest value from left or the smallest value from
right. This operation requires only O(1) heap inserts or deletes, so it runs in time O(log n).

find-median(): If there are an odd number of elements in the data structure, one of the two heaps
must have one more element than the other. If it's the maximum element of left, then that element
is greater than half the elements (namely, the other elements of left) and smaller than half the ele-
ments (the elements in right), so it's the median. Therefore, return max(left). By similar reasoning,
if the odd element is in right, then min(right) is the median, so we can return it.

Otherwise, there are an even number of elements in the data structure. This means that the median
element is the average of the two elements closest to the median point. Using reasoning analogous
to the odd case, we know that min(right) and max(left) are those two elements, so we can return the
average of min(right) and max(left).

Both of these operations only require calling min or max in right and left, and therefore run in time
O(1).

4 / 5

Answering Theory Questions
Some of the questions on the problem set will be theory questions that ask you to prove various
mathematical results that are relevant for the analysis of data structures. For questions like these, we
expect that you'll write a formal mathematical proof of the result. However, for ease of grading,
we'd like you to structure your answers as follows:

• Give a high-level description of your analysis or proof. If you're writing a proof, you
might give a two or three sentence description of the main insight behind the proof and how
you'll turn that insight into a proof. If you're asked to perform a calculation of some sort, you
can explain how you went about performing that calculation.

• Write the proof or calculation. This is where you'll either write a formal mathematical
proof or work through the steps in a calculation in detail.

As an example, consider the following problem:

Consider a binary heap B with n elements, where the elements of B are drawn from
a totally-ordered set. Give the best lower bound you can on the runtime of any
comparison-based algorithm for constructing a binary search tree from the ele-
ments of B.

Here is one possible solution:

Proof Idea: The lower bound is Ω(n log n), and this is a tight bound. We'll prove this by first show-
ing that there's an O(n log n)-time, comparison-based algorithm for constructing a BST from the
elements of an n-element heap. Then, we'll show that any o(n log n)-time, comparison-based algo-
rithm for doing the conversion would make it possible to sort n elements in time o(n log n) using
only comparisons, which we know is impossible.

Proof: First, we'll show that there is an O(n log n)-time, comparison-based algorithm for construct-
ing a BST out of the elements of B. Specifically, just iterate across the n elements of B and insert
each into a balanced binary search tree. This does O(n) insertions into a balanced binary search
tree, which will take time O(n log n). This algorithm is also comparison-based because binary
search tree insertion is comparison-based.

Next, we'll show that no o(n log n)-time, comparison-based algorithm for constructing a BST from
a binary heap exists. Assume for the sake of contradiction that such an algorithm exists. Then con-
sider the following algorithm on an array of length n:

• Construct a binary heap B from the array elements in time O(n).

• Create a binary search tree T from B in time o(n log n).

• Do an inorder traversal of T and output the elements in the order visited in time O(n).

Note that the runtime of this algorithm is o(n log n), and each step is comparison-based. However,
this algorithm will sort the elements of the array, because doing an inorder traversal over a BST
will list off the elements of that BST in sorted order. This is impossible, since there is no o(n log
n)-time, comparison-based sorting algorithm. Therefore, no o(n log n)-time, comparison-based al-
gorithm exists for converting a binary heap into a binary search tree. ■

5 / 5

Answering Implementation Questions
Many of the problem sets will ask you to code up various data structures, possibly to gain the experi-
ence doing so, or possibly to ask you to get performance numbers on that data structure. We will
usually provide you with starter files in a particular programming language, and it's our expectation
that you'll write your solution in that language.

In any implementation question, we'd like you to submit your code using our submitter script (details
at the front of the handout) in addition to the rest of your problem set. Please don't submit your code
in your GradeScope submission; it's pretty much impossible to test it that way. ☺

Some coding questions might also come with auxiliary questions about the code you wrote (for ex-
ample, asking you to justify your design decisions), and you should submit those with the rest of
your short answer questions rather than in code.

Working in Pairs
You are welcome to work on the problem sets either individually or in pairs. If you work in a pair,
you are required to submit a single joint assignment with your partner. We'll then grade that single
assignment and assign you and your partner the same overall score. It is a violation of the Stanford
Honor Code to work in a pair and submit assignments individually, since the work you submit would
not be your own. See the handout on the Honor Code for more details.

	Submission Instructions
	Answering Design Questions
	Answering Theory Questions
	Answering Implementation Questions
	Working in Pairs

